нормандская и нормандская породы

Методы Селекции Схема

Методы / Апрель 12, 2016

150.jpgОснованный на принципе колеса рулетки метод селекции, представленный в разд. 4.4 и продемонстрированный в примерах 4.4 и 4.5, считается для генетических алгоритмов основным методом отбора особей для родительской популяции с целью последующего их преобразования генетическими операторами, такими как скрещивание и мутация. Несмотря на случайный характер процедуры селекции, родительские особи выбираются пропорционально значениям их функций приспособленности, т.е. согласно вероятности селекции, определяемой по формуле (4.3). Каждая особь получает в родительском пуле такое количество своих копий, какое устанавливается выражением

, (4.16)

где - количество хромосом , в популяции, а - вероятность селекции хромосомы , рассчитываемая по формуле (4.3). Строго говоря, количество копий данной особи в родительском пуле равно целой части от . При использовании формул (4.3) и (4.16) необходимо обращать внимание на то, что , где - среднее значение функции приспособленности в популяции. Очевидно, что метод рулетки можно применять тогда, когда значения функции приспособленности положительны. Этот метод может использоваться только в задачах максимизации функции (но не минимизации).

Очевидно, что проблему минимизации можно легко свести к задаче максимизации функции и обратно. В некоторых реализациях генетического алгоритма метод рулетки применяется для поиска минимума функции (а не максимума). Это результат соответствующего преобразования, выполняемого программным путем для удобства пользователей, поскольку в большинстве прикладных задач решается проблема минимизации (например, затрат, расстояния, погрешности и т.п.). В качестве примера такой реализации можно назвать программу FlexTool [48]. Однако возможность применения метода рулетки всего лишь для одного класса задач, т.е. только для максимизации (или только для минимизации) можно считать его несомненным недостатком. Другая слабая сторона этого метода заключается в том, что особи с очень малым значением функции приспособленности слишком быстро исключаются из популяции, что может привести к преждевременной сходимости генетического алгоритма. Для предотвращения такого эффекта применяется масштабирование функции приспособленности (п. 4.8.5).

Источник: sernam.ru